您现在的位置:新闻首页>奇迹信息

仅需几秒打印出微米级中国地图

2013-04-02 09:23编辑:alsyq.com人气:


仅需几秒打印出微米级中国地图

 
 

近日,诺贝尔化学奖授予了在冷冻电镜技术领域有突出贡献的科学家,让世界的目光再次聚焦于微观的世界。--

如今,在深圳,国人自主研发的微纳米设备,也聚焦于微观世界,所生产的产品冲破国外垄断,运销欧洲和北美,甚至卖到了NASA(美国国家航空航天局)和常春藤高校等世界顶级科研机构,其中的微纳米3D打印系统不但可以打印出有序排列的人造细胞支架等微纳米级别的生物工程制品,甚至可以打出纳米级别的电路,制备柔性电子器件,助力人们的医疗健康和便捷生活。--

●南方日报记者 徐勉

神奇盒子用“墨水”打印微纳米级材料

把溶液通过微米级的喷嘴挤出,形成小于1μm-10μm(微米)直径的液滴,再通过电场力拉伸,在高精度3D运动平台的配合下,可以做出直径为0.01μm-1μm的点、线的各种组合,实现单根纳米纤维和单个量子点的有序沉积。--这就是电流体动力3D打印机的工作原理。--

在深圳南山区科技园内,四五台全球最先进的微纳米级别3D打印机正在紧锣密鼓地加工中,几天之后,这些设备将分别发往北京、波士顿、迪拜。--

论颜值,这几台机器并未给人眼前一亮的感觉,冰箱大小的黑匣子里全部镂空,内部仿佛一个微波炉,而在盒子的顶部和下端,则留出一根超微小针头和载物台。--不过,“长相”普通的它们,“能耐”却并不普通。--

“这台机器是中科院定制的,专门用于他们最新型的电子材料研究。--”深圳通力微纳科技有限公司总工程师李春斌指着房间角落里一台机器告诉记者,这台黑色机器名为电流体动力3D打印机,工作原理是把溶液通过微米级的喷嘴挤出,形成小于1μm-10μm直径的液滴,再通过电场力拉伸,在高精度3D运动平台的配合下,可以做出直径为0.01μm-1μm的点、线的各种组合,实现单根纳米纤维和单个量子点的有序沉积。--

“可以理解为一台微纳米级别的3D打印机。--”李春斌解释道,传统的3D的打印机实际上是一种宏观上的生产工艺,通过高温熔解和挤出堆积式工艺生产出各种各样的模具。--另外,目前市场上现有的其他3D打印机,只能打印大于或等于喷头直径的点、线,而电流体动力打印可以打印小于喷头直径的点、线。--

而微纳米级别的3D打印机,所打印出的是微纳米级别的特殊结构。--打印机将导电“墨水”置于机器当中,通过电场将这神奇的“墨水”,拉出一根根直径仅几十纳米到几微米的细丝,而这些细丝则按照既定电脑程序,排布成任意形状和三维结构的制品。--

李春斌介绍,拉丝的过程类似于纺织工艺中的“织布”过程,一根根细丝连成线,最后就可以在一个平面上“织造”出一张仅有纳米至微米厚度的薄膜。--

记者了解到,目前,这种工艺已被用于高端生物领域。--2016年,广东珠三角的一家生物科技公司,通过定制这种微纳米3D打印机,来尝试生产可用于人体中的血管、手术隔离膜等组织。--

在通力微纳科技的实验室中,记者看到一张半透明薄膜,李春斌解释,这张薄膜的厚度仅有0.5mm,是一家生物材料公司所生产的用于可植入人体的组织,仅仅巴掌大小的薄膜,其市场价格就近数千元。--

用一克金做打印原料一整天都消耗不完

与其他的微纳结构制造技术相比,电流体动力打印具有设备简单、操作方便、成本低、原料来源广等优点,在众多领域如电子器件、柔性电子显示器、可穿戴设备、太阳能薄膜电池、微传感器、生物支架、组织工程、有机发光二极管、生物传感器、能量收集等领域具有巨大的发展潜力,并开始获得应用。--

除了生物类用品外,如何将微纳米材料应用于难度更大的微电子领域?中国科学院化学研究所研究院研究员张兴业告诉记者,这需要突破微纳米生产中此前无序抛丝的难题,即是要让纳米纤维能够有序地排布,而3D电流体动力打印机的研制成功,实现了≤1μm的单个点、单根线的精确打印。--

纳米纤维的有序排布,让科研者对微纳米材料的的应用有了无限想象。--“不但可以打印细胞支架,甚至可以做显微镜里才能看到的微型电路,进一步缩小电子元器件的体积。--”李春斌说道,近年来,随着微纳米结构制造领域不断向前推进,微纳米3D打印设备成为全球微纳米结构研究者的“刚需”。--

与其他的微纳结构制造技术相比,电流体动力打印具有设备简单、操作方便、成本低、原料来源广等优点,在电子器件、柔性电子显示器、可穿戴设备、太阳能薄膜电池、微传感器、生物支架、组织工程、有机发光二极管、生物传感器、能量收集等领域具有巨大的发展潜力,并开始获得应用。--

(来源:网络整理)

织梦二维码生成器
已推荐
0
  • 凡本网注明"来源:的所有作品,版权均属于中,转载请必须注明中,http://www.yfruits.com/。违反者本网将追究相关法律责任。
  • 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。






图说新闻

更多>>